3.8.80 \(\int x^2 \sqrt {a+c x^4} \, dx\) [780]

Optimal. Leaf size=234 \[ \frac {1}{5} x^3 \sqrt {a+c x^4}+\frac {2 a x \sqrt {a+c x^4}}{5 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {2 a^{5/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{3/4} \sqrt {a+c x^4}}+\frac {a^{5/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{3/4} \sqrt {a+c x^4}} \]

[Out]

1/5*x^3*(c*x^4+a)^(1/2)+2/5*a*x*(c*x^4+a)^(1/2)/c^(1/2)/(a^(1/2)+x^2*c^(1/2))-2/5*a^(5/4)*(cos(2*arctan(c^(1/4
)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2)
)*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+a)^(1/2)+1/5*a^(5/4)*(cos(2*a
rctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4)))
,1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {285, 311, 226, 1210} \begin {gather*} \frac {a^{5/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{3/4} \sqrt {a+c x^4}}-\frac {2 a^{5/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{3/4} \sqrt {a+c x^4}}+\frac {1}{5} x^3 \sqrt {a+c x^4}+\frac {2 a x \sqrt {a+c x^4}}{5 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[a + c*x^4],x]

[Out]

(x^3*Sqrt[a + c*x^4])/5 + (2*a*x*Sqrt[a + c*x^4])/(5*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (2*a^(5/4)*(Sqrt[a] +
Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(
3/4)*Sqrt[a + c*x^4]) + (a^(5/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF
[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(3/4)*Sqrt[a + c*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int x^2 \sqrt {a+c x^4} \, dx &=\frac {1}{5} x^3 \sqrt {a+c x^4}+\frac {1}{5} (2 a) \int \frac {x^2}{\sqrt {a+c x^4}} \, dx\\ &=\frac {1}{5} x^3 \sqrt {a+c x^4}+\frac {\left (2 a^{3/2}\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx}{5 \sqrt {c}}-\frac {\left (2 a^{3/2}\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{5 \sqrt {c}}\\ &=\frac {1}{5} x^3 \sqrt {a+c x^4}+\frac {2 a x \sqrt {a+c x^4}}{5 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {2 a^{5/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{3/4} \sqrt {a+c x^4}}+\frac {a^{5/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{3/4} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 4.55, size = 51, normalized size = 0.22 \begin {gather*} \frac {x^3 \sqrt {a+c x^4} \, _2F_1\left (-\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {c x^4}{a}\right )}{3 \sqrt {1+\frac {c x^4}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[a + c*x^4],x]

[Out]

(x^3*Sqrt[a + c*x^4]*Hypergeometric2F1[-1/2, 3/4, 7/4, -((c*x^4)/a)])/(3*Sqrt[1 + (c*x^4)/a])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.16, size = 112, normalized size = 0.48

method result size
default \(\frac {x^{3} \sqrt {x^{4} c +a}}{5}+\frac {2 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {x^{4} c +a}\, \sqrt {c}}\) \(112\)
risch \(\frac {x^{3} \sqrt {x^{4} c +a}}{5}+\frac {2 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {x^{4} c +a}\, \sqrt {c}}\) \(112\)
elliptic \(\frac {x^{3} \sqrt {x^{4} c +a}}{5}+\frac {2 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {x^{4} c +a}\, \sqrt {c}}\) \(112\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/5*x^3*(c*x^4+a)^(1/2)+2/5*I*a^(3/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c
^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(
1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + a)*x^2, x)

________________________________________________________________________________________

Fricas [A]
time = 0.08, size = 88, normalized size = 0.38 \begin {gather*} \frac {2 \, a \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) - 2 \, a \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (c x^{4} + 2 \, a\right )} \sqrt {c x^{4} + a}}{5 \, c x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

1/5*(2*a*sqrt(c)*x*(-a/c)^(3/4)*elliptic_e(arcsin((-a/c)^(1/4)/x), -1) - 2*a*sqrt(c)*x*(-a/c)^(3/4)*elliptic_f
(arcsin((-a/c)^(1/4)/x), -1) + (c*x^4 + 2*a)*sqrt(c*x^4 + a))/(c*x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.39, size = 39, normalized size = 0.17 \begin {gather*} \frac {\sqrt {a} x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**4+a)**(1/2),x)

[Out]

sqrt(a)*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*gamma(7/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + a)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,\sqrt {c\,x^4+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + c*x^4)^(1/2),x)

[Out]

int(x^2*(a + c*x^4)^(1/2), x)

________________________________________________________________________________________